

Open Science Practices in Hydrology Research

Mohammad Farmani

PhD Student, Hydrology and Atmospheric Sciences

Roots for Resilience Program

- Forging new interdisciplinary collaborations
- Bring people together from different programs
- Global scale environmental problems
- Data science techniques and large amount of data
- Building teamwork and team science skills

RESEARCH, INNOVATION & IMPACT Data Science Institute

RESEARCH, INNOVATION & IMPACT Arizona Institutes for Resilience

Open Science

- Making science accessible for all
- Open Access Publications
- Open Data
 - FAIR Principle
- Open Educational Resources
- Open Methodology
- Open Source Software
- Open Peer Review

2023 is the year of Open Science

Data Management Plan

- What is DMP?
- Why should you care about data management?
- Elements of a good DMP
 - Information about data & data format(s)
 - Metadata content and format(s)
 - \circ Policies
 - Long-term storage

Documentation & version control

- Project Documentation
- Scientific papers
- Public Repositories for Documentation
- Using GitHub for version control
- <u>https://mfarmani95.github.io/F</u> <u>OSS_Weekly/</u>

	÷	Home		Q Search	ি FOSS_Weekly ৫০ ४০
	UoA Noa team Home Data Our team Method	h-MP/SMAP research	O What is WrOng With it? ⁽⁹⁾ hen the soil retains more moisture than is realistically present, it can lead to the generation of tificially elevated streamflow and baseflow. This is because soil water content is intrinsically iked to the two primary mechanisms of streamflow generation: I Infiltration excess and aturation excess I		On this page What is the problem? So what is wrong with it? 🥩
I	Results Noah-MF	2	Imagine a scenario where an arid region's surface soil moisture is soil approaches or reaches saturation due to such overestimatio subsequent rainfall diminishes. This condition can amplify infiltra increased surface runoff. Essentially, this means models might p	s overestimated. If this surface n, its capacity to absorb ation excess, resulting in portray streamflow values that	

Application of Soil Moisture Memory to evaluate parametrization of soil hydraulic schemes in Noah-MP.

Mohammad Farmani, GuoYue Niu, Ali Behrangi

Motivations

- A prevalent trend observed in Land Surface Models (LSMs) is the overestimation of surface soil moisture when compared to SMAP and in-situ observations.
- This results in the unrealistic representation of the soil moisture-precipitation coupling feedbacks

Soil moisture variation

 Noah-MP Control-Run overestimate soil moisture compared to SMAP

Objective

 Implementing soil moisture memory to enhance soil moisture dynamic in Noah_MP using SMAP and InSitu soil moisture, particularly during dry periods.

Soil Moisture Loss function

- Hybrid model developed by McColl et al. (2019)
- Drainage dominated and Stage-I ET as Energy-limited
- Stage-II ET as Water-limited

Schematic of surface water loss process adopted from McColl et al. (2017),

Data

- SMAP L3 surface soil moisture
- International Soil Moisture Network (ISMN) root zone soil moisture
- Noah-MP surface and root zone soil moisture

Noah-MP Scenarios

Scenario	Infiltration scheme	Water retention scheme	Ponding depth threshold (mm)	
MF_CH	Matrix flow	Clapp and Hornberger	50	NWM uses this scheme
DPM_vGM	Preferential Flow (Dual permeable)	Van Genuchten	50	
MF_vGM	Matrix flow	Van Genuchten	50	
MF_vGM0	Matrix flow	Van Genuchten	0	
MF_vGM200	Matrix flow	Van Genuchten	200	

Short-term surface SMM

 various parametrizations are consistent with SMAP

Conclusion

- CH generates higher SSM and SMM compared to VG.
- An increase in ponding depth leads to a rise in surface soil moisture, as well as enhanced soil moisture memory, both long-term and short-term.
- The presence of macropores enhances infiltration, thereby resulting in a reduced long-term memory and an increase in short-term memory of Soil Surface Moisture (SSM).

Acknowledgements

- Arizona Institute for Resilience (AIR)
- Cyverse
- Data Science Institute

