

R4R Program and Behavior of Seismic Collectors in Steel Building Structures

2024-05-07 12:59:13

Sudan Pandey Wednesday, November 13

Presentation Outline

Roots for Resilience (R4R) Scholarship

• Program Overview

Behavior of Seismic Steel Collectors

- Background
- Experimental Study
- Test Data

Roots for Resilience (R4R)

The Roots for Resilience Program provides training and support to select graduate students on open, reproducible science and computational infrastructure tools to enhance research focused on resiliency in the environment

https://datascience.arizona.edu/r4r

Roots for Resilience (R4R)

- Led by the Arizona Institute for Resilience (AIR), CyVerse, and the Data Science Institute (DSI).
- **13 scholarships** awarded in Fall 2024 (typically one grad per department through nomination)
- **PhD candidates** who have completed qualifying exams. But others (including exceptional master's students)
- **\$7,000** stipend awarded in two installments

R4R Goals

- Develop data science capabilities.
- Accelerate research projects .
- Build professional networks for addressing large-scale challenges and research questions.
- Develop new interdisciplinary collaborations across AIR, DSI, CyVerse, and other academic units.
- Develop a cohort among participants.

Program Schedule and Requirements

Schedule

- 2 hrs/week Foundation Open Science Skills workshop (online)
- 2 hrs/week In person cohort meetings

Requirements

- Weekly journal on GitHub
- Capstone Project (short presentation on two aspects learned from the program)
- Departmental presentation, Workshops etc.

Welcome to Foundational Open Science Skills (FOSS) Fall 2024!

FOSS SESSIONS

- **Open Science**
- Data Management ۲
- **Documentation / Communication: GitHub Pages websites**
- How to Talk to Computers
- Version Control
- Reproducibility I:- Software Environments
- Reproducibility II:- Running Containers
- **Reproducibility III:- Building Containers**
- Remote Computing:- CyVerse ٠
- **Remote Computing:- HPC**

https://foss.cyverse.org/schedule/#calendar

Creating a Website

HOME Publications Teaching Talks Portfolio CV

Sudan Pandey

Structural and Wind Engineer

- Tucson, AZ
- 🏦 The University of Arizona
- 🖂 Email
- প্ত Google Scholar
- ORCID
- **G** Github
- in LinkedIn

- Github
- Use of readily available templates
- Jekyll Academic pages, Al-Folio
 - https://github.com/academicpages/academicpages.github.io
 - https://github.com/alshedivat/al-folio

https://pdy-sdn.github.io/pandeysudan.github.io/

Remote Computing with HPC

open OnDemand

OnDemand provides an integrated, single access point for all of your HPC resources.

Pinned Apps A featured subset of all available apps

Remote Computing with HPC

1. Home Directory for Open on-demand HPC portal:

https://ood.hpc.arizona.edu/pun/sys/dashboard/files/fs//home/u12/netid

Research Tecrotocyce ANIZONA HPC Systems ANIZONA HPC Systems	eractive Ap	ops 🔹 🖻	My Interactive Sessi	ions					😮 Help 🔻	Logged in as pandeysud	an 🕞 Log Out
This is the UArizona <i>Open OnDemand</i> server Please NOTE: "windfall" jobs will be restarted or terminated w	ithout not	ice if pre-e	empted by a "standar	rd" job in queue.							
					▶_ Open in Ter	minal C Refresh	+ New File	ew Directory	🛓 Upload 🛛 🛓 D	Download Globus 🕒 Copy/Ma	ove The Delete
Home Directory		/ xdisk	/ rfleisch / pandeysu	udan / 🕼 Change directory	y]						Copy path
 /groups /xdisk 					_			Show Ov	wner/Mode 🛛	Show Dotfiles Filter:	s - 0 rows selected
		Туре	A	Name				Size		Modified at	
		•		Casting			• •	-		6/25/2024 4:11:15 PM	
		•		Collectors		Disk				Disk Quota (used/n	nax)
		li		RUN01-10051986.out			/home/u12/r	fleisch			80.0K/50.0G
				run_job.txt			/xdisk/rflei	isch			17.6G/19.5T
							/groups/rfle	eisch			104.4G/500.0G

Remote Computing with HPC

SLURM Script (run_slurm.txt)

#!/bin/bash #SBATCH --job-name=TEST4 #SBATCH --output=%x-%j.out #SBATCH --account=rfleisch #SBATCH --mail-type=ALL #SBATCH --mail-user=pandeysudan@arizona.edu #SBATCH --partition=standard ### REQUIRED. Set the number of cores that will be used for this job. #SBATCH --ntasks=94 ### REQUIRED. Set the number of nodes #SBATCH --nodes=1 ### REQUIRED. Set the memory required for this job. #SBATCH --mem-per-cpu=5gb ### REQUIRED. Specify the time required for this job, hhh:mm:ss #SBATCH --time=5:00:00

To run this script:

sbatch run_slurm.txt


```
_____
### PART 2: Executes bash commands to run your job
± _____
### Load required modules/libraries if needed
###module load ansys
module purge
module unload gnu8 openmpi3
module load intel
module load ansys/21.1
### change to your script's directory
cd /xdisk/rfleisch/pandeysudan/Collectors/TEST4/RUN01
### Run your work
date
### GUI command line for linux
/usr/bin/time ansys211 -dis -np 94 -j AFW-RUN04 -b <HPC PP.mac
date
```


Behavior of Seismic Collectors in Steel Building Structures

Sudan Pandey Wednesday, November 13

Lateral Load Resisting System

Systems	Туреѕ	Functions	Components		
Gravity Load	Vertical Elements	Support the gravity or vertical loads	Columns, etc.		
(GLRS)	Horizontal Elements	Transfer gravity to vertical elements	Beams, Slabs, Deck		
Lateral Force Resisting System	Vertical Elements	Transmit lateral forces from the upper levels to foundation	Columns, Bracing, Shear Walls.		
(LFKS)	Horizontal Elements	Transfer lateral forces to vertical elements of the LFRS	Diaphragms, Collectors.		

Loss Of Collectors

CTV Building, 2011 Christchurch Earthquake (New Zealand)

(Courtesy of CERC Report, Canterbury Earthquakes Royal Commission)

Collector Force

Earthquake motion $(\frac{\ddot{u}_g}{g})$

16

B5. DIAPHRAGMS, CHORDS AND COLLECTORS

1. General

Diaphragms and chords shall be designed for the loads and load combinations in the applicable building code. <u>Collectors shall be designed for the load combinations in</u> the applicable building code, including overstrength.

Andread States of Managers

Seismic Provisions for Structural Steel Buildings

July 12, 2748 Separatelia the Second Persence to Second-of Sout Publicage dated June 20 2013 and algoridate second Approach by the Control test of Specifications

AISC 341-16

No Detailed Guidelines on Collector Connection!!

Collector Connection

Bolted Connection (Multiple rows of bolts)

(Courtesy of Chao-Hsien Li)

Collector Connection

Top Flange Welded Connection (TFW)

(Courtesy of Herrick)

Collector Connection

All Flange Welded Connection (AFW)

All flange welded

(Courtesy of Dr. Fleischman)

Fabricated Specimen: Top Flange Weld (TFW)

The TFW is a 3/4-scale test specimen based on a Full-Scale Prototype

Scale	Section	Length	Shear Tab (H x W x t)	Bolt Dia	# of bolts	Factored Strength	Maximum Exp. Axial Capacity
1.0	W24X162	ft 30	in x in x in 18 x 4.5 x 1/2	in 1.00	6	* 714	k 1499
0.75	W18x97	20	13.75 x 3.25 x 3/8	0.750	6	435	940

Fabricated Specimen: All Flange Weld (AFW)

The AFW is a 2/3-scale test specimen based on a Full-Scale Prototype

Scale	Section	Length	Shear Tab (H x W x t)	Bolt Dia	# of bolts	Factored Strength	Maximum Exp. Axial Capacity
1.0	W24X162	<i>ft</i> 30	in 18 x 4.5 x 1/2	in 1.00	6	к 1427	k 2633
0.67	W16x57	20	11.8 x 3.25 x 3/8	0.625	6	458	978

Experimental Verification

Test Setup

Test Setup

Instrumentation

All SGs are mounted on east face of top flange

Instrument	Count
LVDT	33
LP	7
Axial strain gage	55
Rosette gage	5
Biaxial gage	6

Collector Local Behavior Measurement

Axial Deformation at girder centroid

$$\delta_c = \frac{LD1_X + LD2_X}{2}$$

Rotation of the girder cross section (positive when bottom flange open)

$$\boldsymbol{\theta}_c = \frac{LD2_X - LD1_X}{h'}$$

h' = vertical distance between LD 1-X and LD 2-X = 18.6 +1.7*2 = 22"

LVDT's to measure the deformation

Collector Local Behavior Measurement

Loading Protocol: Cyclic Axial Loading

Test 1: TFW3 Loading: Cyclic Axial Rotation: No

Loading Protocol: Rotation and Cyclic Axial Loading

Test 2: TFW1

Fracture Surface: Test-1

Top Flange Fracture Surface

Brittle Failure

Fracture Surface: Test-2

Beam Cross Section View

Beam Top View

Ductile Failure

Collector Connection Behavior

Top Flange Centroid Deformation (in)

Test-3

Rotation (rad)

37

Finite Element Model

(Sudan Pandey, 2024)

Acknowledgment

- Dr. Lansey, Dr. Fleischman, and Dr. Boccelli for the Nomination.
- Jeff, Michele, Tina Johnson, Tina Lee from R4R program.

- NSF
- ATLSS Center, Lehigh
- Thomas Marullo, Dr. Richard Sause, Dr. Jim Ricles, and Dr. Alia Amer from Lehigh University
- Dr. Chao-Hsien Li, Dr. Chia-Ming Uang from UCSD

pandeysudan@arizona.edu

github.com/pdy-sdn